Lithium-Ion Batteries Work Earns Nobel Prize in Chemistry for 3 Scientists

John B. Goodenough, M. Stanley Whittingham and Akira Yoshino were recognized for research that has “laid the foundation of a wireless, fossil fuel-free society.”

The batteries developed through the work of John B. Goodenough, M. Stanley Whittingham and Akira Yoshino are used in “everything from mobile phones to laptops and electric vehicles,” the Nobel committee said

The Royal Swedish Academy of Sciences on Wednesday awarded the 2019 Nobel Prize in Chemistry to three scientists who developed lithium-ion batteries, which have revolutionized portable electronics and are very likely powering a device you’re using now to read this article. Larger examples of the batteries have given rise to electric cars that can be driven on long trips, while the miniaturized versions are used in lifesaving medical devices like cardiac defibrillators.
John B. Goodenough, M. Stanley Whittingham and Akira Yoshino will share the prize, which is worth about $900,000.
“Lithium-ion batteries are a great example of how chemistry can transform people’s lives,” said Bonnie Charpentier, president of the American Chemical Society. “It’s wonderful to see this work recognized by the Nobel Prize.”
The three researchers’ work in the 1970s and ’80s led to the creation of powerful, lightweight and rechargeable batteries used in nearly every smartphone or laptop computer, and in billions of cameras and power tools. Astronauts on the International Space Station rely on them, and engineers working on renewable energy grids often turn to them. By storing electricity generated when sunlight and wind are at their peak, lithium-ion batteries can reduce dependence on fossil fuel energy sources and help lessen the impact of climate change.
M. Stanley Whittingham, 77, a professor at Binghamton University, State University of New York, and one of the three winners, said that he always hoped lithium-ion technology would grow, “but we never envisaged it growing this far. We never imagined it being ubiquitous in things like iPhones.”
John B. Goodenough, 97, is a professor at the University of Texas at Austin. With the award he becomes the oldest Nobel Prize winner, but is still active in research.
And Akira Yoshino, 71, is an honorary fellow for the Asahi Kasei Corporation in Tokyo and a professor at Meijo University in Nagoya, Japan. He said after the announcement that he was pleased that the technology could also help fight climate change, calling lithium-ion batteries “suitable for a sustainable society.”
Ever since Alessandro Volta invented the first true battery in 1800, scientists have tried to find ways to get electrons to flow from a negative electrode called an anode to a positive electrode called a cathode. Volta did this by stacking discs of copper and zinc, and linking them with a cloth soaked in salty water. When wires were connected to the discs to complete a circuit, the battery produced a stable current. In subsequent decades, versions of these batteries powered telegraphs and other devices.

ion_bat2A lithium ion battery production line in a factory in Dongguan, Guangdong Province, China.CreditJoyce Zhou/Reuters

The first rechargeable battery came about in 1859. These were made from lead-acid, and are still used to start gasoline- and diesel-powered vehicles today. But lead-acid batteries were bulky and heavy. Nickel-cadmium batteries, which were less efficient but more compact, were invented in 1899.

News Related